Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jonathan D. Crane

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

Correspondence e-mail: j.d.crane@hull.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.033$
$w R$ factor $=0.072$
Data-to-parameter ratio $=19.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

N-[6-(2,2-Dimethylpropionylamino)pyridin-2-yl]-2,2-dimethylpropionamide

At 150 K , only one of the two amide groups of the title compound, $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$, is involved in weak hydrogen bonding.

Comment

The title compound, (I), is a member of a series of N, N^{\prime} -pyridine-2,6-diyl-bisamides reported not to form triply hydrogen-bonded ($D A D-A D A$) complexes (Feibush et al., 1986).

(I)

Due to the steric bulk of the tert-butyl groups of (I), only one of the two amide groups forms a hydrogen bond (Table 2) and the geometry indicates that this interaction is relatively weak, with a significant deviation from linearity. As expected, this amide group has a shorter $\mathrm{N}-\mathrm{H}$ bond and slightly longer $\mathrm{C}=\mathrm{O}$ bond than the non-hydrogen-bonded amide group. In addition, the pyridine N atom is not involved in hydrogen bonding. The angles between the least-squares planes of the pyridine ring and the two amide groups are 29.67 (5) ($\mathrm{C} 6 / \mathrm{O} 1 /$ $\mathrm{N} 2)$ and $8.13(11)^{\circ}(\mathrm{C} 11 / \mathrm{O} 2 / \mathrm{N} 3)$, respectively.

Experimental

The title compound, (I), was prepared according to the method of Feibush et al. (1986). Suitable crystals were grown from diethyl ether by slow evaporation.

Figure 1
View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

Figure 2
The intermolecular hydrogen bond of (I).

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=277.36$
Monoclinic, $P 2_{1} / c$
$a=11.4234(13) \AA$
$b=15.1383(19) \AA$
$c=9.3774(10) \AA$
$\beta=104.885(9)^{\circ}$
$V=1567.2(3) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II area-detector
\quad diffractometer
ω scans
22744 measured reflections
3601 independent reflections
2174 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.072$
$S=0.80$
3601 reflections
190 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.176 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 10680 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Needle, colourless
$0.50 \times 0.20 \times 0.10 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.060 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=-19 \rightarrow 19 \\
& l=-10 \rightarrow 12
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0372 P)^{2}\right] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0101(10)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-C6	$1.2165(14)$	$\mathrm{N} 3-\mathrm{C} 11$	$1.3702(16)$
O2-C11	$1.2215(15)$	$\mathrm{N} 3-\mathrm{C} 5$	$1.3995(16)$
N1-C1	$1.3328(15)$	$\mathrm{N} 3-\mathrm{H} 3$	$0.866(16)$
N1-C5	$1.3423(15)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.3859(17)$
N2-C6	$1.3689(15)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.3810(18)$
N2-C1	$1.4080(16)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.3834(18)$
N2-H2	$0.810(16)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.3875(18)$
C1-N1-C5	$118.19(11)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$117.43(11)$
C6-N2-C1	$126.92(11)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$122.75(11)$
C11-N3-C5	$128.92(12)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 3$	$111.62(11)$
N1-C1-C2	$123.61(11)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{N} 2$	$121.71(11)$
N1-C1-N2	$112.69(11)$	$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$	$115.51(11)$
C3-C2-C1	$116.96(12)$	$\mathrm{O} 2-\mathrm{C} 11-\mathrm{N} 3$	$121.78(12)$
C2-C3-C4	$121.01(12)$		
C6-N2-C1-N1	$-147.04(12)$	$\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 5-\mathrm{N} 1$	$-176.39(12)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.866(15)$	$2.180(15)$	$2.9508(14)$	$148.0(14)$

Symmetry code: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$.

All H atoms were initially located in a difference Fourier map. The positions of the amide H atoms were refined freely along with an isotropic displacement parameter. The methyl H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$. All other H atoms were placed in geometrically idealized positions, with a C-H distance of $0.95 \AA . U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: $X-A R E A$ (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-R E D$ (Stoe \& Cie, 2001); program(s) used to solve structure: X-STEP32 (Stoe \& Cie, 2001) and SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: WinGX (Farrugia, 1999) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Feibush, B., Figueroa, A., Charles, R., Onan, K. D., Feibush, P. \& Karger, B. L. (1986). J. Am. Chem. Soc. 108, 3310-3318.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2001). X-AREA, X-RED and X-STEP32. Stoe \& Cie GmbH, Darmstadt, Germany.

